Intelligent Mobile Coronavirus Recognition Centre Based on IEEE 802.15.4
Dublin Core
Title
Intelligent Mobile Coronavirus Recognition Centre Based on IEEE 802.15.4
Subject
Artificial intelligence
COVID-19
Decision tree algorithm
Detection system.
Description
The novel coronavirus (COVID-19) has become widespread around the world. It started in Wuhan, China, and has since spread rapidly among people living in other countries. Hence, the World Health Organization has considered COVID-19 as a pandemic that threatens millions of people’s lives. Due to the high number of infected people, many hospitals have been facing critical issues in providing the required medical services. For instance, some clinical centers have been unable to provide one of the most important medical services, namely blood tests to determine whether an individual is infected with COVID-19. Therefore, it is important to present an alternative diagnosis option to prevent the further spread of COVID-19. In this paper, a proposed intelligent detection communication system (IDCS) is configured for distributed mobile clinical centers to control the pandemic. In addition, the intelligent system is integrated with the Zigbee communication protocol to build a mobile COVID-19 detection system. The proposed system was trained on X-ray COVID-19 lung images used to identify infected people. The Zigbee protocol and decision tree algorithm were used to design the IDCS. The results of the proposed system show high accuracy 94.69% and accept results according to the performance measurements.
Creator
Alzahrani, Abdulkareem
M Ali Alheeti, Khattab
Salah Thabit, Samer
Al_Dosary, Duaa
Shaban Al-Ani, Muzhir
Source
International Journal of Interactive Mobile Technologies (iJIM); Vol. 15 No. 16 (2021); pp. 4-15
1865-7923
Publisher
International Association of Online Engineering (IAOE), Vienna, Austria
Date
2021-08-23
Rights
Copyright (c) 2021 Abdulkareem Alzahrani, Khattab M Ali Alheeti, Samer Salah Thabit, Duaa Al_Dosary, Muzhir Shaban Al-Ani
Relation
Format
application/pdf
Language
eng
Type
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Identifier
Citation
Abdulkareem Alzahrani et al., Intelligent Mobile Coronavirus Recognition Centre Based on IEEE 802.15.4, International Association of Online Engineering (IAOE), Vienna, Austria, 2021, accessed November 22, 2024, https://igi.indrastra.com/items/show/2079