A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
Dublin Core
Title
A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
Subject
Machine Learning
Neural Network
Web site detection
malicious web sites
Algorithms
Systematic Literature Review
Description
The large branches of Machine Learning represent an immense support for the detection of malicious websites, they can predict whether a URL is malicious or benign, leaving aside the cyber attacks that can generate for network users who are unaware of them. The objective of the research was to know the state of the art about Neural Networks and their impact for the Detection of malicious Websites in network users. For this purpose, a systematic literature review (SLR) was conducted from 2017 to 2021. The search identified 561 963 papers from different sources such as Taylor & Francis Online, IEEE Xplore, ARDI, ScienceDirect, Wiley Online Library, ACM Digital Library and Microsoft Academic. Of the papers only 82 were considered based on exclusion criteria formulated by the author. As a result of the SLR, studies focused on machine learning (ML), where it recommends the use of algorithms to have a better and efficient prediction of malicious websites. For the researchers, this review presents a mapping of the findings on the most used machine learning techniques for malicious website detection, which are essential for a study because they increase the accuracy of an algorithm. It also shows the main machine learning methodologies that are used in the research papers.
Creator
Gamboa-Cruzado, Javier
Briceño-Ochoa, Juan
Huaysara-Ancco, Marco
Alva Arévalo, Alberto
Ríos Vargas, Caleb
Arangüena Yllanes, Magaly
Rodriguez-Baca, Liset S.
Source
International Journal of Interactive Mobile Technologies (iJIM); Vol. 17 No. 01 (2023); pp. 108-128
1865-7923
Publisher
International Association of Online Engineering (IAOE), Vienna, Austria
Date
2023-01-10
Rights
Copyright (c) 2022 Javier Gamboa-Cruzado, Juan Briceño-Ochoa, Marco Huaysara-Ancco, Alberto Alva Arévalo, Caleb Ríos Vargas, Magaly Arangüena Yllanes, Liset S. Rodriguez-Baca
https://creativecommons.org/licenses/by/4.0
Relation
Format
application/pdf
Language
eng
Type
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Identifier
Citation
Gamboa-Cruzado, Javier et al., A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users, International Association of Online Engineering (IAOE), Vienna, Austria, 2023, accessed November 22, 2024, https://igi.indrastra.com/items/show/2467