A Holistic Model for Recognition of Handwritten Arabic Text Based on the Local Binary Pattern Technique

Dublin Core

Title

A Holistic Model for Recognition of Handwritten Arabic Text Based on the Local Binary Pattern Technique

Subject

Handwritten Arabic Text
Holistic Recognition
Local Binary Pattern
Support Vector Machines
Artificial Neural Network.

Description

In this paper, we introduce a multi-stage offline holistic handwritten Arabic text recognition model using the Local Binary Pattern (LBP) technique and two machine-learning approaches; Support Vector Machines (SVM) and Artificial Neural Network (ANN). In this model, the LBP method is utilized for extracting the global text features without text segmentation. The suggested model was tested and utilized on version II of the IFN/ENIT database applying the polynomial, linear, and Gaussian SVM and ANN classifiers. Performance of the ANN was assessed using the Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) training methods. The classification outputs of the herein suggested model were compared and verified with the results obtained from two benchmark Arabic text recognition models (ATRSs) that are based on the Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA) methods using various normalization sizes of images of Arabic text. The classification outcomes of the suggested model are promising and better than the outcomes of the examined benchmarks models. The best classification accuracies of the suggested model (97.46% and 94.92%) are obtained using the polynomial SVM classifier and the BR ANN training methods, respectively.

Creator

AL-Shatnawi, Atallah
Al-Saqqar, Faisal
Alhusban, Safa’a

Source

International Journal of Interactive Mobile Technologies (iJIM); Vol. 14 No. 16 (2020); pp. 20-34
1865-7923

Publisher

International Association of Online Engineering (IAOE), Vienna, Austria

Date

2020-09-22

Rights

Copyright (c) 2020 Atallah AL-Shatnawi, Faisal Al-Saqqar, Safa’a alhusban

Relation

Format

application/pdf

Language

eng

Type

info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article

Identifier

Citation

AL-Shatnawi, Atallah, Al-Saqqar, Faisal and Safa Alhusban’a, A Holistic Model for Recognition of Handwritten Arabic Text Based on the Local Binary Pattern Technique, International Association of Online Engineering (IAOE), Vienna, Austria, 2020, accessed November 23, 2024, https://igi.indrastra.com/items/show/1792

Social Bookmarking